Sparse Semidefinite Programs with Near-Linear Time Complexity
نویسندگان
چکیده
Some of the strongest polynomial-time relaxations to NP-hard combinatorial optimization problems are semidefinite programs (SDPs), but their solution complexity of up to O(nL) time and O(n) memory for L accurate digits limits their use in all but the smallest problems. Given that combinatorial SDP relaxations are often sparse, a technique known as chordal conversion can sometimes reduce complexity substantially. In this paper, we describe a modification of chordal conversion that allows any general-purpose interiorpoint method to solve a certain class of sparse SDPs with a guaranteed complexity of O(nL) time and O(n) memory. To illustrate the use of this technique, we solve the MAX kCUT relaxation and the Lovasz Theta problem on power system models with up to n = 13659 nodes in 5 minutes, using SeDuMi v1.32 on a 1.7 GHz CPU with 16 GB of RAM. The empirical time complexity for attaining L decimal digits of accuracy is ≈ 0.001nL seconds.
منابع مشابه
Sparse Approximate Solutions to Semidefinite Programs
We propose an algorithm for approximately maximizing a concave function over the bounded semi-definite cone, which produces sparse solutions. Sparsity for SDP corresponds to low rank matrices, and is a important property for both computational as well as learning theoretic reasons. As an application, building on Aaronson’s recent work, we derive a linear time algorithm for Quantum State Tomogra...
متن کاملAn inexact dual logarithmic barrier method for solving sparse semidefinite programs
A dual logarithmic barrier method for solving large, sparse semidefinite programs is proposed in this paper. The method avoids any explicit use of the primal variable X and therefore is well-suited to problems with a sparse dual matrix S. It relies on inexact Newton steps in dual space which are computed by the conjugate gradient method applied to the Schur complement of the reduced KKT system....
متن کاملApproximating Semidefinite Packing Programs
In this paper we define semidefinite packing programs and describe an algorithm to approximately solve these problems. Semidefinite packing programs arise in many applications such as semidefinite programming relaxations for combinatorial optimization problems, sparse principal component analysis, and sparse variance unfolding techniques for dimension reduction. Our algorithm exploits the struc...
متن کاملPreprocessing sparse semidefinite programs via matrix completion
Considering that preprocessing is an important phase in linear programming, it should be systematically more incorporated in semidefinite programming solvers. The conversion method proposed by the authors (SIAM Journal on Optimization, vol. 11, pp. 647–674, 2000, and Mathematical Programming, Series B, vol. 95, pp. 303–327, 2003) is a preprocessing of sparse semidefinite programs based on matri...
متن کاملNewton Sketch: A Near Linear-Time Optimization Algorithm with Linear-Quadratic Convergence
We propose a randomized second-order method for optimization known as the Newton sketch: it is based on performing an approximate Newton step using a randomly projected Hessian. For self-concordant functions, we prove that the algorithm has superlinear convergence with exponentially high probability, with convergence and complexity guarantees that are independent of condition numbers and relate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017